
A direct-forcing immersed boundary projection method
for simulating fluid-solid interaction problems

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 32001, Taiwan

March 16, 2019

Taiwan-India Joint Conference @ CASTS/NTU

1 / 32



Outline of the talk

1 A direct-forcing immersed boundary projection method of
Kajishima et al.

2 Inconsistency in the method
3 Two remedies to alleviate the inconsistency problem
4 Numerical experiments
5 Concluding remarks

2 / 32



Fluid-structure interaction problem

The primary issues for CFD are accuracy, computational
efficiency, and the ability to handle complex geometries.

The fluid-structure interaction problem describes the coupling of
fluid and structure mechanics. It usually requires the modeling
of complex geometric structure and moving boundaries. Thus, it
is very challenging for conventional body-fitted approach.

We will introduce a Cartesian-grid-based non-boundary conforming
approach for fluid-solid interaction problems. More precisely, we will
consider the direct-forcing immersed boundary projection method.
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Fluid-solid interaction (FSI) problem

A simple one-way coupling FSI problem is flow over a stationary or
moving solid body with a prescribed velocity.

Let Ω be the fluid domain which encloses a rigid body positioned at
Ωs(t) with a prescribed velocity us(t, x). The FSI problem with initial
value and no-slip boundary condition can be posed as follows:

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in (Ω \Ωs)× (0, T],

∇ · u = 0 in (Ω \Ωs)× (0, T],
u = ub on ∂Ω× [0, T],
u = us on ∂Ωs × [0, T],
u = u0 in (Ω \Ωs)× {t = 0},

Ω

Ωs(t) • us(t,x)

where u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, f the density of body force.
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Direct-forcing immersed boundary (IB) approach

We first consider the solid object as a portion of the fluid and then
introduce a virtual force F to the momentum equation, and we expect
the problem can be solved on the whole domain Ω and do not need
to set the interior boundary condition u = us on the interface ∂Ωs:

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f + F in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = ub on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

Note that the virtual force F is distributed only in the whole solid
object region Ωs(t), making the region acts exactly as if it were a solid
rigid body immersed in the fluid with a prescribed velocity us(t, x).

But, at this moment, we do not know how to specify the virtual force F
such that the region fulfills the prescribed velocity us(t, x).
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Time-discretization of the incompressible NS equations

Let us first discretize the time variable of the Navier-Stokes problem,
with the spatial variable being left continuous. Consider the implicit
Euler time-discretization with an explicit first-order approximation to
the nonlinear convection. Then we have the BVP at time t = tn+1:

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 + Fn+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω.

It is highly inefficient in solving this BVP directly, even if Fn+1 is
already known. This is the reason for proposing the projection
approach to decouple the computation of (un+1, pn+1).

Next, we will consider a direct-forcing IB approach based on the
first-order Chorin projection scheme. The virtual force Fn+1 will be
specified in the scheme when we decouple the time-discretized problem.
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A direct-forcing IB projection method of Kajishima et al.

The main idea of the method was first proposed by Kajishima et al.
(JSME-B 2001) & later by Noor-Chern-Horng (CM 2009).

Step 1 : Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2 : Determine u∗∗ and pn+1 by solving (ensured by Helmholtz-Hodge D.)
u∗∗ − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.
It is equivalent to solving the Neumann Poisson problem:{
∇2pn+1 =

1
∆t
∇ · u∗ in Ω,

∇pn+1 · n = 0 on ∂Ω,

and set u∗∗ = u∗ − ∆t∇pn+1 =⇒ u∗∗ · n = un+1
b · n on ∂Ω.
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Method of Kajishima et al. (cont′d)

Step 3 : Define the virtual force Fn+1 and then determine the velocity
field un+1 by setting

un+1 − u∗∗

∆t
= Fn+1 := η

us − u∗∗

∆t
in Ω,

where η(x, tn+1) is defined by

η(x, tn+1) =

{
1 x ∈ Ωn+1

s ,
0 x 6∈ Ωn+1

s .

The virtual force Fn+1 exists on the whole solid body and
zero elsewhere. In other words, in this step, we simply set

un+1 =

{
u∗∗ in Ω \Ωn+1

s ,
us in Ωn+1

s .
——————–

Both Kajishima and Chern-Horng groups have successfully employed this
rather simple method to study many fluid-solid interaction problems.

But, there is still an inconsistency problem in the method!
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Second-order time-discretization

Using the implicit second-order Crank-Nicolson formula, we have

un+1 − un

∆t
− ν

2
∇2(un+1 + un)

+[(u · ∇)u]n+ 1
2 + [∇p]n+

1
2 = [f ]n+

1
2 + [F]n+

1
2 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω,

where the notation [g]n+
1
2 denotes some second-order approximation

to 1
2 (g

n+1 + gn) or denotes the exact value. Two popular choices are:

1
2
(
gn+1 + gn) = 3

2 gn − 1
2 gn−1 + O(∆t2) (Adams-Bashforth)

1
2
(
gn+1 + gn) = gn+ 1

2 + O(∆t2) (midpoint)

Again, it is inefficient to solve the semi-implicit equations directly and
[F]n+

1
2 is unknown. We will solve it by using the projection approach.
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Direct-forcing IB method based on Brown et al. projection

Step 1 : Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν

2
∇2(u∗ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2 : Determine u∗∗ and ϕn+1 by solving
u∗∗ − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.

Step 3 : Update the pressure by pn+ 1
2 = pn− 1

2 + ϕn+1 − ν∆t
2
∇2 ϕn+1.

Step 4 : Define virtual force Fn+ 1
2 and then determine velocity field

un+1 by setting

un+1 − u∗∗

∆t
= Fn+ 1

2 := η
us − u∗∗

∆t
in Ω.
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Inconsistency in Kajishima′s method

Although the Kajishima method can produce reasonable results,
it is not always convergent when the direct-forcing approach
combined with an arbitrary chosen projection scheme such as
the 2nd-order in time of Brown et al., unless the time step ∆t is
taken to be very small.

Note that at the new time level t = tn+2, we have to solve

u∗ − un+1

∆t
− ν

2
∇2(u∗ + un+1) + [(u · ∇)u]n+ 3

2 +∇pn+ 1
2 = [f ]n+

3
2 .

But un+1 & pn+ 1
2 obtained in the previous step may be not consistent!

Because at time tn+1, we first determine u∗∗ and pn+ 1
2 simultaneously,

and then we enforce un+1 = u∗∗ in Ω \Ωn+1
s & un+1 = us in Ωn+1

s ,
but pn+ 1

2 unchanged. That is, pn+ 1
2 is consistent with u∗∗, not un+1.

How to alleviate the inconsistency problem?
We will use the idea of the prediction-correction approach and
carefully choose a good projection scheme.
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A direct-forcing IB projection method with PC (Choi-Moin)

Prediction stage:

Step P1 : Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

ũ = un+1
b on ∂Ω;

=⇒ u∗ − ũ
∆t

−∇pn− 1
2 = 0 in Ω.

Step P2 : Determine u∗∗ and ϕn+1 by solving
u∗∗ − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step P3 : Predict the virtual force F̃
n+ 1

2 by setting

un+1 − u∗∗

∆t
= F̃

n+ 1
2 := η

us − u∗∗

∆t
in Ω.
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A direct-forcing IB projection method with PC (Choi-Moin)

Correction stage:

Step C1 : Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 + F̃

n+ 1
2 in Ω,

ũ = un+1
b on ∂Ω;

=⇒ u∗ − ũ
∆t

−∇pn− 1
2 = 0 in Ω.

Step C2 : Determine u∗∗ and correct ϕn+1 by solving
u∗∗ − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step C3 : Update the pressure as pn+ 1
2 = ϕn+1 − ν

2
∇ · ũ.

Step C4 : Correct the velocity un+1 and virtual force Fn+ 1
2 ,

un+1 − u∗∗

∆t
= η

us − u∗∗

∆t
in Ω, Fn+ 1

2 := F̃
n+ 1

2 + η
us − u∗∗

∆t
in Ωn+1

s .
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Second remedy for the inconsistency

Step 1 : Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 + Fn− 1

2 in Ω,

ũ = un+1
b on ∂Ω;

=⇒ u∗ − ũ
∆t

−∇pn− 1
2 = 0 in Ω.

Step 2 : Determine u∗∗ and correct ϕn+1 by solving
u∗∗ − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step 3 : Update the pressure as pn+ 1
2 = ϕn+1 − ν

2
∇ · ũ.

Step 4 : Determine velocity un+1 and virtual force Fn+ 1
2 ,

un+1 − u∗∗

∆t
= η

us − u∗∗

∆t
in Ω, Fn+ 1

2 := Fn− 1
2 + η

us − u∗∗

∆t
in Ωn+1

s .
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Space-discretization on a staggered grid

In the following numerical examples, we will employ the prediction-
correction direct-forcing IB projection method (based on 2nd-order
Choi-Moin scheme) and apply the second-order centered differences
over a staggered Cartesian grid for space-discretization in the
projection scheme:

Diagram of the computational domain Ω with staggered grid,
where the unknowns u, v and p are approximated at the

grid points marked by→, ↑ and •, respectively
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Rotating solid disk

Problem setting:

I The computational domain is Ω = (0, 1)× (0, 1), within which
there is a rotating solid disk centered at (0.5, 0.5) with radius
0.25. The disk rotates counterclockwise by a constant angular
velocity ω = 4.

I The Reynolds number is Re := 1/ν = 100, time step length is
∆t = 0.1h (CFL number = 0.1), and T = 4.

u = 0 v = 0 ∂p
∂y = 0

u = 0 v = 0 ∂p
∂y = 0

u = 0

v = 0
∂p
∂x = 0

u = 0

v = 0
∂p
∂x = 0

0 0.5 1

0

0.2

0.4

0.6

0.8

1
t = 4 t = 4

0 0.5 1

0

0.2

0.4

0.6

0.8

1

-0.5

-0.4

-0.3

-0.2

-0.1

0

boundary conditions velocity field pressure contours
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Error behavior

Error behavior of the numerical solutions uh, vh, and ph at T = 4
using the solution of h = 1/1620 as the reference solution

1/h 1-norm order 2-norm order max-norm order
20 2.0820e-02 − 3.9742e-02 − 1.7573e-01 −

uh 60 8.4854e-03 0.82 1.7044e-02 0.77 8.2900e-02 0.68
180 2.5123e-03 1.11 5.0608e-03 1.11 2.8370e-02 0.98
540 6.5240e-04 1.23 1.3207e-03 1.22 8.1061e-03 1.14

20 2.5334e-02 − 4.2845e-02 − 1.7573e-01 −
vh 60 1.0199e-02 0.83 1.8496e-02 0.76 8.2900e-02 0.68

180 3.0741e-03 1.09 5.5503e-03 1.10 2.8554e-02 0.97
540 7.9659e-04 1.23 1.4500e-03 1.22 8.1061e-03 1.15

20 6.8326e-03 − 1.3968e-02 − 8.4475e-02 −
ph 60 3.0749e-03 0.73 6.2523e-03 0.73 4.8072e-02 0.51

180 9.8066e-04 1.04 2.1771e-03 0.96 3.8831e-02 0.19
540 2.6861e-04 1.18 7.5445e-04 0.96 2.5701e-02 0.38

The convergence rate of velocity seems to be super-linear
in 1-norm, 2-norm and max-norm!

17 / 32



Flow past a stationary cylinder

Problem setting:
I Ω = (−13.4D, 16.5D)× (−8.35D, 8.35D), where D is the

diameter of the cylinder and we take D = 0.2.

I A non-uniform grid 250× 160 is adopted to discretize the
computational domain, within which a uniform grid 60× 60 is
employed in the region [−D, D]× [−D, D].

I The small uniform mesh size is h = 2D/60 and time step length
is ∆t = 0.4h (CFL number is 0.4).
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Numerical results at Re = 40

The comparison of experimental and numerical results of steady
state wake dimensions and maximum drag coefficient for Re = 40

Methods Cd Lw/D a/D b/D θ

Calhoun 1.62 2.18 − 　− 54.2
Coutanceau-Bouard∗ − 2.13 0.76 0.59 53.8
Linnick-Fasel 1.54 2.28 0.72 0.60 53.6
Su et al. 1.63 − − − −
Taira-Colonius (B) 1.54 2.30 0.73 0.60 53.7
Tritton∗ 1.48 − − − −
Ye et al. 1.52 2.27 − − −
Present method-PC 1.56 2.18 0.72 0.60 53.3

 !

"

 
#

About Re ≤ 47, two symmetrical vortices will be stationarily
attached behind the cylinder.

19 / 32



Drag and lift coefficients at Re=100

By increasing the value of Re, the symmetrical vortices will become
unstable and break apart, leading to an alternating vortex shedding.

20 25 30 35 40 45 50

time

-0.5

0

0.5

1

1.5
drag and lift coefficients

drag

lift

The drag and lift coefficients, Cd and C`, are defined as

Cd =
Fd

U2
∞D/2

and C` =
F`

U2
∞D/2

,

where the drag and lift forces, Fd and F`, are calculated by

Fd = −
∫

Ω
F1 dx ≈ −∑

xij

F1h2 and F` = −
∫

Ω
F2 dx ≈ −∑

xij

F2h2.
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Instantaneous virtual force F distributed on Ωs

The direct-forcing IB projection method with PC based on
the Choi-Moin method
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Instantaneous sink-source distribution :
∫

cell∇ · uh dxdy

The direct-forcing IB projection method with PC based on
the Choi-Moin method
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Two cylinders moving towards each other

Problem setting:
I In this problem, Re = 40. A uniform grid 640× 320 is adopted to

discretize the computational domain Ω = (−8, 24)× (−8, 8),
and the time step is ∆t = 1/200, CFL number = 0.1.

I The motion of the lower and upper cylinders are governed by
setting the dynamics of their centers (xlc, 0) and (xuc, 1.5) to

xlc =

{ 4
π

sin
(πt

4

)
, 0 ≤ t ≤ 16,

t− 16, 16 ≤ t ≤ 32,
xuc =

{
16− 4

π
sin
(πt

4

)
, 0 ≤ t ≤ 16,

32− t, 16 ≤ t ≤ 32.
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Two cylinders moving towards each other

18 20 22 24 26 28 30 32

time

0.5

1

1.5

2

2.5

3
drag coefficients

present

Xu and Wang

18 20 22 24 26 28 30 32

time

-1

-0.5

0

0.5

1

1.5
lift coefficients

present

Xu and Wang

The time evolution of drag and lift coefficients, Cd and C`,
for the upper cylinder compared with the results of Xu-Wang

(JCP 2006, immersed interface method, ∆t = 1/2000)

Our results are in good agreement with that of Xu-Wang (JCP 2006)
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Flow past a swimming fish-like solid body

Problem setting: the fish motion is prescribed, i.e., Ωs(t) and us(t, x)
are given. (NACA0012 airfoil with the oscillation equation)

I Reynolds number is defined as Re = U∞L/ν, where L is the
chord length of wavy foil. In this simulation, L = U∞ = 1 and
Re = 5000.

I Computational domain size is 6L× 2L, Ω = (−2, 4)× (−1, 1).

I ∆x = ∆y = 1/480, ∆t = 0.0002, CFL number ≈ 0.1, and the final
time T = 20.

Please see some animations of the numerical simulations.
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The two-way fluid-solid interaction problem

The fluid-solid interaction of the freely falling solid body with a
virtual force can be formulated as the following initial-boundary
value problem: find u, p, F, uc and ω with

∫
Ω p = 0 such that

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f + F t ∈ (0, T], x ∈ Ω,

∇ · u = 0 t ∈ (0, T], x ∈ Ω,
u = ub t ∈ (0, T], x ∈ ∂Ω,

u = u0 t = 0, x ∈ Ω,

u = us := uc + ω× r in Ωs,

(Ms −Mf )
duc

dt
= (Ms −Mf )g−

∫
Ωs

ρf FdV, uc(0) = uc0,

(Is − If )
dω

dt
= −

∫
Ωs

ρf r× FdV, ω(0) = ω0,

where we consider a 2-D solid object of constant density ρs
positioned at Ωs with centroid Xc, translational velocity uc and
angular velocity ω.
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Sedimentation of a circular body : ν = 0.01

Problem setting:
The computational domain Ω = (0, 2)× (0, 6).

The diameter of the body is d = 0.25 and is located at (1, 4) at
time t = 0.

The fluid density is ρf = 1 and the disk density ρs = 1.5.

ν = 0.01, h = 1/256, and ∆t = 7.5× 10−5.

0 0.1 0.2 0.3 0.4 0.5

time

0

0.5

1

1.5

2
x-coordinate of the center of the ball

Present: h=1/256

Glowinski et al.: h=1/256

Glowinski et al.: h=1/384

0 0.1 0.2 0.3 0.4 0.5

time

0

1

2

3

4

5

6
y-coordinate of the center of the ball

Present: h=1/256

Glowinski et al.: h=1/256

Glowinski et al.: h=1/384

Time evolution of position of the center of the ball
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Flow field visualization
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Please see some animations of the numerical simulations of freely falling
solid bodies in an incompressible viscous fluid.
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Thermal fluid-solid interaction problem

Let Ω ⊂ R2 be a bounded fluid domain which encloses a single rigid
solid body positioned at Ωs. The direct-forcing approach to the
thermal fluid-solid interaction problem can be posed as:

∂u
∂t
− P1∇2u + (u · ∇)u +∇p = f + F + P2θe,

∇ · u = 0,
∂θ

∂t
− P3∇2θ + u · ∇θ = E,

together with IC, BC on ∂Ω, and internal BC on ∂Ωs:

u = us

θ = θs, or − κ
∂θ

∂n
= Qs.

Here F and E are the momentum forcing and energy forcing,
respectively. e = (0, 1)> is the unit vector in the vertical direction.
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Mixed convection (with buoyancy)

We consider a mixed convection problem in a lid-driven cavity with
an embedded cylinder:

Reynolds number Re = 100, Prandtl number Pr = 0.7, Richardson

number Ri =
Gr
Re2 = 0.01, 1, 5, with Grashof number Gr,

P1 =
1

Re
=

1
100

, P2 =
Gr
Re2 , P3 =

1
RePr

.
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Numerical results
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Concluding remarks

1 We have developed a simple direct-forcing IB projection method
for FSI problems, where the immersed rigid body can be
stationary or moving in the fluid. This approach alleviates the
inconsistency problem in the method of Kajishima et al.

2 Further works are still in progress for studying the dynamics of
freely falling body in an incompressible viscous fluid and the
thermal FSI problems.

3 Partial details about today’s talk can be found in

T.-L. Horng, P.-W. Hsieh, S.-Y. Yang*, and C.-S. You,
A simple direct-forcing immersed boundary projection method with
prediction-correction for fluid-solid interaction problems,
Computers & Fluids, 176 (2018), pp. 135-152.

Thank you for your attention!
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